0671-429276467

我们只用绿色的食品原料

天博app零食加工厂,只为您的健康着想

SIGIR阿里论文|一种端到端的模型:基于异构内容流的动态排序

本文摘要:小叽导读:搜索引擎在电商领域饰演着极其重要的角色,它可以很好地引导用户的潜在购置行为。传统电商搜索引擎通常指商品搜索引擎,用户输入一个query,返回一个商品列表。然而,随着自媒体的生长,越来越多的用户更愿意分享自己的购物体验,他们以文章、评价和视频等形式将自己的看法展示出来。 在这篇文章中,这些统称为内容流。为了给用户提供更多的购物资助,内容搜索引擎应运而生。 在用户搜索商品的时候,给用户推荐高质量的内容流,资助用户选择自己中意的以及用户可能喜欢的商品。

天博app

小叽导读:搜索引擎在电商领域饰演着极其重要的角色,它可以很好地引导用户的潜在购置行为。传统电商搜索引擎通常指商品搜索引擎,用户输入一个query,返回一个商品列表。然而,随着自媒体的生长,越来越多的用户更愿意分享自己的购物体验,他们以文章、评价和视频等形式将自己的看法展示出来。

在这篇文章中,这些统称为内容流。为了给用户提供更多的购物资助,内容搜索引擎应运而生。

在用户搜索商品的时候,给用户推荐高质量的内容流,资助用户选择自己中意的以及用户可能喜欢的商品。主要作者:高子喆、高正、黄恒、蒋卓人、严玉良研究配景:现在,对于异构数据的排序还存在许多的挑战。首先,商品搜索引擎和内容搜索引擎所提供的跨领域知识要被充实使用,使用户在商品搜索引擎中的行为偏好应用到内容搜索引擎中。其次,现有的算法需要支持多媒体内容的排序。

天博app

在本文中,我们的目的是解决商品搜索引擎和内容搜索引擎中异构数据排序的问题,给用户推荐富厚的、个性化的内容流。我们把算法分成了两部门:1)异构内容流类型排序,即决议每个坑位展示何种类型的内容流,文章、视频还是商品列表;2)同构的内容流内容排序,第二个步骤使用广为人知的DSSM模型,在这个内容流类型下,对内容流的内容举行排序,选择相似度最高的内容插入。本文主要聚焦在第一个步骤。

所提出的算法:本文提出两种算法用于内容流类型的排序,独立多臂老虎机算法和个性化马尔科夫深度神经网络算法。通过这种方式,所有坑位的内容流类型都是独立的,伪代码如下:有依赖的异构数据流类型选择由三种因素决议:用户,query和前一个坑位类型。首先,在同一个query下,用户可以表现出差别的偏好。

好比用户搜索“连衣裙”,某个用户可能更偏好先容的文章,另一个用户可能会更喜欢视频的先容。而且,没有用户喜欢单一的类型展示,或多或少都喜欢多元化的内容流类型的排列。针对同一个query,应该给差别的用户展示差别的排序效果。

我们提出的个性化马尔科夫深度神经网络算法包罗两个步骤,包罗对用户和query的表现任务学习和坑位类型的预测学习。用户和query的低维表现 我们构建了一个graph,包罗用户,query和内容。使用node2vec学习用户和query的embedding,如下图:图中的中间部门是训练节点的embedding表现。

天博app下载

输入层是节点的独热编码。权重矩阵W是所有节点的embedding,其将节点独热编码映射到一个D维的空间中。坑位类型预测 我们的目的函数界说为其中X表现输入第i个坑位的特征,为了简化我们pMDNN模型而且加速运行的速度,我们只使用跟当前预测的坑位前一个坑位的信息。

然而这带来了一个问题,如何预测第一个坑位的类型,这里我们使用到了跨领域知识,我们从用户最近在商品搜索引擎中浏览的宝物信息中抽取将其映射为内容搜索坑位特征,使其满足当前模型的输入要求。我们的模型输入层为用户的embedding,query embedding和前一个坑位的embedding。可以表现为三个全毗连层接入输入层中。每一层使用一个线性分类器和交织熵作为loss function。

激活函数选择Relu,输出层应用Softmax为激活函数。实验效果:我们将提出的模型部署到A/B测试分桶情况中,选择了5个主要的指标来对比两个模型iMAB和pMDNN。

pv代表展示内容的个数;pvclick表现展示的内容几多被点击;uv是几多个用户使用了内容搜索引擎,uv click表现几多用户点击了内容流;至于uv ctr,表现用户是否点击内容流的比率。下表展示了实验效果,其中pMDNN的实验效果优于iMAB。尤其是uv click和uv ctr,这对于我们的场景很是重要,因为uv click的增长表现更多的用户倾向于内容搜索引擎因为其能资助他们更好的购物。

同时,uv ctr的增长展示出使用内容搜索引擎的用户对我们推荐的内容流是认可的。至于pv click的提高也代表了我们提出的模型越发的切合用户的个性化需求。

基于pv click和uv ctr,我们可以认为pMDNN应用了跨领域知识而且全局优化多坑位类型确实要优于坑位独立的iMAB。参考文献:[1] Róbert Busa-Fekete andEyke Hüllermeier. A survey of preference-based online learning with banditalgorithms.[2] Ali Mamdouh Elkahky, YangSong, and Xiaodong He. 2015. A multi-view deep learning approach for crossdomain user modeling in recommendation systems. In Proceedings of the 24thInternational Conference on World Wide Web. International World Wide WebConferences Steering Committee, 278–288.。


本文关键词:天博app,SIGIR,阿里,论文,一种,端,到,的,模型,基于,异构

本文来源:天博app-www.jxnaisi.com